GLOBAL TOPOLOGICAL PROPERTIES OF HOMOGENEOUS VECTOR FIELDS IN R^3

Citation:

ZHANG Xin'an,CHEN Lansun,LIANG Zhaojun.GLOBAL TOPOLOGICAL PROPERTIES OF HOMOGENEOUS VECTOR FIELDS IN R^3[J].Chinese Annals of Mathematics B,1999,20(2):185~194
Page view: 1054        Net amount: 752

Authors:

ZHANG Xin'an; CHEN Lansun;LIANG Zhaojun

Foundation:

the National Natural Science Foundation of China
Abstract: In this paper, the authors prove that the flows of homogeneous vector field $Q(x)$ at infinity are topologically equivalent to the flows of the tangent vector field $Q_T(u)$ $(u\in S^2)$ on the sphere $S^2$, and show the theorems for the global topological classification of $Q(x)$. They derive the necessary and sufficient conditions for the global asymptotic stability and the boundedness of vector field $Q(x),$ and obtain the criterion for the global topological equivalence of two homogeneous vector fields.

Keywords:

Tangent vector field, Invariant cone, Global topological equivalence

Classification:

34C37, 58F09
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持