NOTES ON GLAISHER'S CONGRUENCES

Citation:

HONG Shaofang.NOTES ON GLAISHER'S CONGRUENCES[J].Chinese Annals of Mathematics B,2000,21(1):33~38
Page view: 1346        Net amount: 765

Authors:

HONG Shaofang;

Foundation:

Project supported by the Postdoctoral Foundation of China.
Abstract: Let $p$ be an odd prime and let $n\ge 1, k\ge 0$ and $r$ be integers. Denote by $B_k$ the $k$-th Bernoulli number. It is proved that (i) If $r\ge 1$ is odd and suppose $p\ge r+4,$ then $\sum^{p-1}_{j=1}\limits {1\over (np+j)^r}\equiv -{{(2n+1)r(r+1)}\over {2(r+2)}} B_{p-r-2}p^2 \ (\hbox {mod}\, p^3).$ (ii) If $r\ge 2$ is even and suppose $p\ge r+3,$ then $\sum_{j=1}^{p-1}\limits {1\over (np+j)^r}\equiv {r\over {r+1}}B_{p-r-1}p\ (\hbox {mod}\, p^2).$ (iii) $\sum^{p-1}_{j=1}\limits {1\over (np+j)^{p-2}}\equiv -(2n+1)p\ (\hbox {mod}\, p^2).$ This result generalizes the Glaisher's congruence. As a corollary, a generalization of the Wolstenholme's theorem is obtained.

Keywords:

Glaisher’s congruence, kth Bernoulli number, Teichmuller character, p-adic L function

Classification:

11A41, 11S80
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持