ON THE DIFFUSION PHENOMENON OF QUASILINEAR HYPERBOLICWAVES

Citation:

YANG Han.ON THE DIFFUSION PHENOMENON OF QUASILINEAR HYPERBOLICWAVES[J].Chinese Annals of Mathematics B,2000,21(1):63~70
Page view: 1274        Net amount: 683

Authors:

YANG Han;
Abstract: The authors consider the asymptotic behavior of solutions of the quasilinear hyperbolic equation with linear damping $$ u_{tt} + u_t - \hbox{div}\,(a(\nabla u)\nabla u) = 0, $$ and show that, at least when $n\leq 3,$ they tend, as $t \to + \ue$, to those of the nonlinear parabolic equation $$ v_t-\hbox{div}\,(a(\nabla v)\nabla v)=0, $$ in the sense that the norm $\|u(.,t)-v(.,t)\|_{L^{\infty}(\rn)}$ of the difference $u-v$ decays faster than that of either $u$ or $v$. This provides another example of the diffusion phenomenon of nonlinear hyperbolic waves, first observed by Hsiao, L. and Liu Taiping (see [1, 2]).

Keywords:

Asymptotic behavior of solutions, Quasilinear hyperbolic and parabolic equations, Diffusion phenomenon

Classification:

35B40, 35L70
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持