UNILATERAL EIGENVALUE PROBLEMS FOR NONLINEARLY ELASTIC PLATES: AN APPROACH VIA PSEUDO-MONOTONE OPERATORS

Citation:

Liliana GRATIE.UNILATERAL EIGENVALUE PROBLEMS FOR NONLINEARLY ELASTIC PLATES: AN APPROACH VIA PSEUDO-MONOTONE OPERATORS[J].Chinese Annals of Mathematics B,2000,21(2):147~152
Page view: 1275        Net amount: 821

Authors:

Liliana GRATIE;
Abstract: This paper considers a class of variational inequalities that model the buckling of a von Karman plate clamped on a part of its boundary and lying on a at rigid support. The existence and bifurcation results of D. Goeleven, V. H. Nguyen and M. Thera[6] rely on the Leray-Schauder degree. Using the topological degree for pseudo-monotone operators of type $(S_+)$; the author establishes a more general existence result for such unilateral eigenvalue problems.

Keywords:

Variational inequalities, Topological degree, Generalized monotone operators, Unilateral eigenvalue problem, Nonlinearly elastic plates

Classification:

35A15, 35S05, 49J40
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持