THE (U + K)-ORBIT OF ESSENTIALLY NORMAL OPERATORS AND COMPACT PERTURBATIONS OF STRONGLY IRREDUCIBLE OPERATORS

Citation:

JI Youqing,JIANG Chunlan,WANG Zongyao.THE (U + K)-ORBIT OF ESSENTIALLY NORMAL OPERATORS AND COMPACT PERTURBATIONS OF STRONGLY IRREDUCIBLE OPERATORS[J].Chinese Annals of Mathematics B,2000,21(2):237~248
Page view: 1062        Net amount: 1066

Authors:

JI Youqing; JIANG Chunlan;WANG Zongyao
Abstract: Let $\Cal H$ be a complex, separable, infinite dimensional Hilbert space, $T\in\Cal L(\Cal H)$. $(\Cal U+\Cal K)(T)$ denotes the $(\Cal U+\Cal K)$-orbit of $T$, i.e., $(\Cal U+\Cal K)(T)=\{R^{-1}TR:\ R$ is invertible and of the form unitary plus compact$\}$. Let $\Omega$ be an analytic and simply connected Cauchy domain in $\Bbb C$ and $n\in \Bbb N$. $\Cal A(\Omega,n)$ denotes the class of operators, each of which satisfies (i) $T$ is essentially normal; \quad (ii) $\sigma(T)=\overline{\Omega}$, $\rho_F(T)\cap \sigma(T)=\Omega$; (iii) $\ind(\lambda-T)=-n$, $\nul(\lambda-T)=0$ $(\lambda\in \Omega)$. It is proved that given $T_1$, $T_2\in \Cal A(\Omega,n)$ and $\epsilon>0$, there exists a compact operator $K$ with $\|K\|<\epsilon$ such that $T_1+K\in(\Cal U+\Cal K)(T_2)$. This result generalizes a result of P. S. Guinand and L. Marcoux$^{[6, 15]}$. Furthermore, the authors give a character of the norm closure of $(\Cal U+\Cal K)(T)$, and prove that for each $T\in \Cal A(\Omega,n)$, there exists a compact (SI) perturbation of $T$ whose norm can be arbitrarily small.

Keywords:

Essentially normal, (U + K)-orbit, Compact perturbation, Spectrum, Strongly irreducible operator

Classification:

47A55, 47B, 47C
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持