$\Gamma$-CONVERGENCE OF INTEGRAL FUNCTIONALS DEPENDING ON VECTOR-VALUED FUNCTIONS OVER PARABOLIC DOMAINS

Citation:

JIAN Huaiyu.$\Gamma$-CONVERGENCE OF INTEGRAL FUNCTIONALS DEPENDING ON VECTOR-VALUED FUNCTIONS OVER PARABOLIC DOMAINS[J].Chinese Annals of Mathematics B,2000,21(2):249~258
Page view: 1046        Net amount: 776

Authors:

JIAN Huaiyu;

Foundation:

Project supported by the National Natural Science Foundation of China (No. 19701018).
Abstract: This paper studies $\Gamma$-convergence for a sequence of parabolic functionals, $$F^\varepsilon (u)=\int_0^T\int_{\Omega} f(x/\varepsilon, t, \nabla u) dxdt\ \text{as}\ \ \varepsilon \to 0,$$ where the integrand $f$ is nonconvex, and periodic on the first variable. The author obtains the representation formula of the $\Gamma$-limit. The results in this paper support a conclusion which relates $\Gamma$-convergence of parabolic functionals to the associated gradient flows and confirms one of De Giorgi's conjectures partially.

Keywords:

$\Gamma$-convergence, Parabolic-minima, Nonconvex functionals, Parabolic

Classification:

35B27, 49J45
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持