ON THE CONVERGENCE OF GODUNOV SCHEME FOR NONLINEAR HYPERBOLIC SYSTEMS

Citation:

A. BRESSAN,H. K. JENSSEN.ON THE CONVERGENCE OF GODUNOV SCHEME FOR NONLINEAR HYPERBOLIC SYSTEMS[J].Chinese Annals of Mathematics B,2000,21(3):269~284
Page view: 1155        Net amount: 711

Authors:

A. BRESSAN; H. K. JENSSEN
Abstract: The authors consider systems of the form $$u_t+A(u)u_x=0, \qquad u\in\Bbb R^n, $$ where the matrix $A(u)$ is assumed to be strictly hyperbolic and with the property that the integral curves of the eigenvector fields are straight lines. For this class of systems one can define a natural Riemann solver, and hence a Godunov scheme, which generalize the standard Riemann solver and Godunov scheme for conservative systems. This paper shows convergence and L^1 stability for this scheme when applied to data with small total variation. The main step in the proof is to estimate the increase in the total variation produced by the scheme due to quadratic coupling terms. Using Duhamel's principle, the problem is reduced to the estimate of the product of two Green kernels, representing probability densities of discrete random walks. The total amount of coupling is then determined by the expected number of crossings between two random walks with strictly different average speeds. This provides a discrete analogue of the arguments developed in [3,9] in connection with continuous random processes.

Keywords:

Nonlinear hyperbolic systems, Godunov scheme, Convergence, L^1 stability

Classification:

35L45, 35L65, 35A35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持