ON THE EXISTENCE OF FIXED POINTS FOR LIPSCHITZIAN SEMIGROUPS IN BANACH SPACES

Citation:

ZENG Luchuan,YANG Yali.ON THE EXISTENCE OF FIXED POINTS FOR LIPSCHITZIAN SEMIGROUPS IN BANACH SPACES[J].Chinese Annals of Mathematics B,2001,22(3):397~404
Page view: 1214        Net amount: 752

Authors:

ZENG Luchuan; YANG Yali

Foundation:

Project supported by the National Natural Science Foundation of China (No.19801023) and the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China.
Abstract: Let C be a nonempty bounded subset of a $p$-uniformly convex Banach space $X$, and $T=\{T(t):t\in S\}$ be a Lipschitzian semigroup on $C$ with $\lim_{n\rightarrow\infty}\limits\inf_{t\in s}\limits|\|T(t)\||<\sqrt{N_p}$, where $N_p$ is the normal structure coefficient of $X$. Suppose also there exists a nonempty bounded closed convex subset $E$ of $C$ with the following properties: (P$_1)x\in E$ implies $\omega_w(x)\subset E;$ (P$_2)T$ is asymptotically regular on $E$. The authors prove that there exists a $z\in E$ such that $T(s)z=z$ for all $s\in S$. Further, under the similar condition, the existence of fixed points of Lipschitzian semigroups in a uniformly convex Banach space is discussed.

Keywords:

Fixed points, Lipschitzian semigroups, Asymptotic regularity, Normal structure coefficient, Asymptotic center

Classification:

47H10, 47H09, 47H20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持