ON THE GENERALIZED GLAISHER-HONG'S CONGRUENCES

Citation:

I. SLAVUTSKII.ON THE GENERALIZED GLAISHER-HONG'S CONGRUENCES[J].Chinese Annals of Mathematics B,2002,23(1):63~66
Page view: 1322        Net amount: 935

Authors:

I. SLAVUTSKII;
Abstract: Recently Hong Shaofang$^{[6]}$ has investigated the sums $\sum_{j=1}^{p-1}\limits (np+j)^{{-r}}$ (with an odd prime number $p\geq 5$ and $n , r \in {\bold N}$) by Washington's $p$-adic expansion of these sums as a power series in $n$ where the coefficients are values of $p$-adic $L$-fuctions$^{[12]}$. Herethe author shows how a more general sums $\sum_{j=1}^{p^{l}-1}\limits {(np^{l}+j)}^{{-r}},l \in {\bold N}$, may be studied by elementary methods.

Keywords:

Glaisher’s congruence, kth Bernoulli number, Kummer-Staudt’s congruence, p-adic L-function

Classification:

11A07, 11A41, 11B68, 11S80
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持