THE $\ov{\hbox{\tf{\char 64}}}$-PROBLEM FOR HOLOMORPHIC (0,2)-FORMS ON PSEUDOCONVEX DOMAINS IN SEPARABLE HILBERT SPACES AND D.F.N.SPACES

Citation:

J. LEE,K. H. SHON.THE $\ov{\hbox{\tf{\char 64}}}$-PROBLEM FOR HOLOMORPHIC (0,2)-FORMS ON PSEUDOCONVEX DOMAINS IN SEPARABLE HILBERT SPACES AND D.F.N.SPACES[J].Chinese Annals of Mathematics B,2002,23(1):67~74
Page view: 1206        Net amount: 961

Authors:

J. LEE; K. H. SHON

Foundation:

The first author was supported by KOSEF postdoctoral fellowship 1998 and the second author was supported by the Brain Korea 21 Project, 1999.
Abstract: This paper shows that the $\ov\partial$-problem for holomorphic $(0,2)$-forms on Hilbert spaces is solvable on pseudoconvex open subsets. By using this result, the authors investigate the existence of the solution of the $\ov\partial$-equation for holomorphic $(0,2)$-forms on pseudoconvex domains in D.F.N. spaces.

Keywords:

$\ov\partial$-problem, Pseudoconvex domain, Nuclear operator, D.F.N. space

Classification:

32W05, 46E50
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持