BOUNDARY REGULARITY FOR WEAK HEAT FLOWS

Citation:

LIU XIANGAO.BOUNDARY REGULARITY FOR WEAK HEAT FLOWS[J].Chinese Annals of Mathematics B,2002,23(1):119~136
Page view: 1273        Net amount: 973

Authors:

LIU XIANGAO;

Foundation:

Project supported by the National Natural Science Foundation of China (No.10071013).
Abstract: The partial regularity of the weak heat flow of harmonic maps from a Riemannian manifold $M$ with boundary into general compact Riemannian manifold $N$ without boundary is considered. It is shown that the singular set Sing(u) of the weak heat flow satisfies $H^n_{\rho}(\Sing(u))=0$, with $n=\text{dimension} M$. Here $H^n_{\rho}$ is Hausdorff measure with respect to parabolic metric $\rho ((x,t),(y,s))=\max \{|x-y|,\sqrt{|t-s|}\}$.

Keywords:

weak heat flow of harmonic maps, Hardy-BMO duality, partial regularity

Classification:

58E20, 58J35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持