ON THE UNIQUENESS OF THE WEAK SOLUTIONS OF A QUASILINEAR HYPERBOLIC SYSTEM WITH A SINGULAR SOURCE TERM

Citation:

J. P. DIAS,M. FIGUEIRA.ON THE UNIQUENESS OF THE WEAK SOLUTIONS OF A QUASILINEAR HYPERBOLIC SYSTEM WITH A SINGULAR SOURCE TERM[J].Chinese Annals of Mathematics B,2002,23(3):317~324
Page view: 1104        Net amount: 769

Authors:

J. P. DIAS; M. FIGUEIRA

Foundation:

Project supported by the FCT and FEDER.
Abstract: This paper is a continuation of the authors' previous paper [1]. In this paper the authors prove, assuming additional conditions on the initial data, some results about the existence and uniqueness of the entropy weak solutions of the Cauchy problem for the singular hyperbolic system $$ \left\{\matrix\format\l &\quad \l\ a_t + (au)_x + {{2au}\over x} = 0, & \ & x>0,\,\, t\geq 0. \ u_t + {1\over 2}\, (a^2 + u^2)_x = 0, & \endmatrix\right. $$

Keywords:

Cauchy problem, Weak solution, Quasilinear hyperbolic system

Classification:

35L45, 35L67
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持