BIFURCATIONS OF ROUGH 3-POINT-LOOP WITH HIGHER DIMENSIONS

Citation:

JIN Yinlai,ZHU Deming,ZHENG Qingyu.BIFURCATIONS OF ROUGH 3-POINT-LOOP WITH HIGHER DIMENSIONS[J].Chinese Annals of Mathematics B,2003,24(1):85~96
Page view: 1070        Net amount: 728

Authors:

JIN Yinlai; ZHU Deming;ZHENG Qingyu

Foundation:

Project supported by the National Natural Science Foundation of China (No.10071022) and the Shanghai Priority Academic Discipline.
Abstract: The authors study the bifurcation problems of rough heteroclinic loop connecting three saddle points for the case $\beta_1>1$, $\beta_2>1$, $\beta_3<1$ and $\beta_1\beta_2\beta_3<1$. The existence, number, coexistence and incoexistence of 2-point-loop, 1-homoclinic orbit and 1-periodic orbit are studied. Meanwhile, the bifurcation surfaces and existence regions are given.

Keywords:

Local coordinates, Poincare map, 1-homoclinic orbit, 1-periodic orbit, Bifurcation surface

Classification:

37C29, 34C23, 34C37
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持