NOTE ON REGULAR D-OPTIMAL MATRICES

Citation:

LI Qiaoliang.NOTE ON REGULAR D-OPTIMAL MATRICES[J].Chinese Annals of Mathematics B,2003,24(2):215~220
Page view: 1140        Net amount: 917

Authors:

LI Qiaoliang;

Foundation:

Project supported by the Science Foundation of China for Postdoctor.
Abstract: Let $ A $ be a $ j\times d $ $ (0, 1) $ matrix. It is known that if $ j=2k-1 $ is odd, then det$(AA^T)\leq (j+1)((j+1)d/4j)^j$; if $ j $ is even, then det$(AA^T)\leq (j+1)((j+2)d/4(j+1))^j.$ $ A $ is called a regular $ D$-optimal matrix if it satisfies the equality of the above bounds. In this note, it is proved that if $ j=2k-1 $ is odd, then $A $ is a regular $ D$-optimal matrix if and only if $ A $ is the adjacent matrix of a $ (2k-1, k, (j+1)d/4j)$-BIBD; if $ j=2k $ is even, then $ A $ is a regular $ D$-optimal matrix if and only if $ A $ can be obtained from the adjacent matrix $ B $ of a $ (2k+1, k+1, (j+2)d/4(j+1))$-BIBD by deleting any one row from $ B.$ Three $ 21\times 42 $ regular $ D$-optimal matrices, which were unknown in [11], are also provided.

Keywords:

Regular D-optimal matrices, Simplex, Weighing design

Classification:

62K05, 05B05, 05B20, 15A15
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持