GLOBAL CLASSICAL SOLUTIONS TO QUASILINEAR HYPERBOLIC SYSTEMS WITH WEAK LINEAR DEGENERACY

Citation:

ZHOU Yi.GLOBAL CLASSICAL SOLUTIONS TO QUASILINEAR HYPERBOLIC SYSTEMS WITH WEAK LINEAR DEGENERACY[J].Chinese Annals of Mathematics B,2004,25(1):37~56
Page view: 1446        Net amount: 1170

Authors:

ZHOU Yi;

Foundation:

Project supported by the National Natural Science Foundation of China (No.10225102), the 973 Project of the Ministry of Science and Technology of China and the Doctoral Programme Foundation of the Ministry of Education of China.
Abstract: Consider the following Cauchy problem for the first order quasilinear strictly hyperbolic system $$\frac{\partial u}{\partial t}+A(u)\frac{\partial u}{\partial x}=0,$$ $$t=0:\quad u=f(x).$$ We let $$M=\sup_{x\in R}|f'(x)|<+\infty.$$ The main result of this paper is that under the assumption that the system is weakly linearly degenerated, there exists a positive constant $\e$ independent of $M$, such that the above Cauchy problem admits a unique global $C^1$ solution $u=u(t,x)$ for all $t\in R$, provided that \begin{align*} \int_{-\infty}^{+\infty}|f'(x)|dx&\le \e,\\int_{-\infty}^{+\infty}|f(x)|dx&\le \frac{\e}{M}. \end{align*}

Keywords:

Global classical solutions, Cauchy problems, Weak linear degeneracy

Classification:

35L45, 35L60
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持