SPECTRAL GAP SOLUTIONS OF THE DISSIPATIVE KIRCHHOFF EQUATION

Citation:

S. PANIZZI.SPECTRAL GAP SOLUTIONS OF THE DISSIPATIVE KIRCHHOFF EQUATION[J].Chinese Annals of Mathematics B,2004,25(1):73~86
Page view: 1218        Net amount: 763

Authors:

S. PANIZZI;

Foundation:

Project supported by the Funds of the “Italian Ministero della Universita e della Ricerca Scientifica e Tecnologica”.
Abstract: The author proves that for initial data in a set $S \subset (H^2(\Omega) \cap H^1_0(\Omega)) \times H^1_0(\Omega) $, unbounded in $H^1_0(\Omega)\times L^2(\Omega)$, the solutions of the Cauchy-Dirichlet problem for the dissipative Kirchhoff equation $$\partial_{t}^{2}u- \Big(\nu + L\g{ \int_{\p{\Omega}}}|\bigtriangledown_{x}u |^{2} dx \Big) \bigtriangleup_{x}u + \delta \partial_{t} u= 0 \qquad (x\in \Omega , \, t > 0), $$ are global in $[0, +\infty)$ and decay exponentially. The functions in $S$ do not satisfy any additional regularity assumption, instead they must satisfy a condition relating their energy with the largest {lacuna} in their Fourier expansion. The larger is the {lacuna} the larger is the energy allowed.

Keywords:

Spectral gap solutions, Dissipative Kirchhoff equation, Lacunae

Classification:

35L70, 35B40, 74H45
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持