SYMMETRIC AND ASYMMETRIC DIOPHANTINE APPROXIMATION

Citation:

TONG Jingcheng.SYMMETRIC AND ASYMMETRIC DIOPHANTINE APPROXIMATION[J].Chinese Annals of Mathematics B,2004,25(1):139~142
Page view: 1231        Net amount: 701

Authors:

TONG Jingcheng;
Abstract: Let $\xi $ be an irrational number with simple continued fraction expansion $$\xi =[a_0;a_1,\cdots,a_i,\cdots]$$ and $\frac{p_i}{q_i}$ be its $i$th convergent. Let $C_i$ be defined by $\xi -\frac{p_i}{q_i}=(-1)^i/(C_iq_iq_{i+1}).$ The author proves the following theorem: {\bf Theorem.} Let $r>1,R>1$ be two real numbers and\vskip 6pt $L=\frac 1{r-1}+\frac 1{R-1}+a_na_{n+1}rR,\quad K=\frac 12\big(L+\sqrt{L^2-\frac 4{(r-1)(R-1)}}\;\big).$\vskip 6pt \noindent Then (\,i\,) $C_{n-2}K;$ (ii) $C_{n-2}>r,\ C_n>R$\ \ imply\ \ $C_{n-1}

Keywords:

Diophantine approximation, Simple continued fraction expansion

Classification:

11J70, 11K60
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持