SOME REMARKS ABOUT THE R-BOUNDEDNESS

Citation:

BU Shangquan.SOME REMARKS ABOUT THE R-BOUNDEDNESS[J].Chinese Annals of Mathematics B,2004,25(3):421~432
Page view: 1156        Net amount: 823

Authors:

BU Shangquan;

Foundation:

Project supported by the National Natural Science Foundation of China (No.10271064) and the Excellent Young Teachers Program of the Ministry of Education of China.
Abstract: Let $X, Y$ be UMD-spaces that have property ($\alpha$), $1 < p < \infty$ and let $\cM$ be an $R$-bounded subset in $\cL(X, Y)$. It is shown that $\{T_{(M_k)_{k\in\Z}}: M_k, k(M_{k+1}- M_k)\in \cM \ {\rm for}\ k\in\Z\}$ is an $R$-bounded subset of $\cL(L^p(0, 2\pi; X),$ $ L^p(0, 2\pi; Y))$, where $T_{(M_k)_{k\in\Z}}$ denotes the $L^p$-multiplier given by the sequence $(M_k)_{k\in\Z}$. This generalizes a result of Venni \cite{Venni}. The author uses this result to study the strongly $L^p$-well-posedness of evolution equations with periodic boundary condition. Analogous results for operator-valued $L^p$-multipliers on $\R$ are also given.

Keywords:

Operator-valued Fourier multiplier, Maximal regularity, Rademacher boundedness

Classification:

42A45, 42C99, 46B20, 47D06
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持