GLOBAL EXISTENCE FOR A CLASS OF SYSTEMS OF NONLINEAR WAVE EQUATIONS IN THREE SPACE DIMENSIONS

Citation:

S. KATAYAMA.GLOBAL EXISTENCE FOR A CLASS OF SYSTEMS OF NONLINEAR WAVE EQUATIONS IN THREE SPACE DIMENSIONS[J].Chinese Annals of Mathematics B,2004,25(4):463~482
Page view: 1080        Net amount: 890

Authors:

S. KATAYAMA;
Abstract: Consider a system of nonlinear wave equations $$ (\pa_t^2-c_i^2 \Delta_x)u_i=F_i(u,\pa u,\pa_x\pa u) \qquad \text{in\ \ $(0, \infty)\times \R^3$} $$ for $ i=1, \cdots, m $, where $ F_i $ ($ i=1, \cdots, m$) are smooth functions of degree $ 2 $ near the origin of their arguments, and $ u=(u_1, \cdots, u_m) $, while $ \pa u $ and $ \pa_x \pa u $ represent the first and second derivatives of $ u $, respectively. In this paper, the author presents a new class of nonlinearity for which the global existence of small solutions is ensured. For example, global existence of small solutions for $$ \begin{cases} (\pa_t^2 -c_1^2 \Delta_x)u_1 = u_2(\pa_t u_2) {}+\text{arbitrary cubic terms}, \\[1mm] (\pa_t^2 -c_2^2 \Delta_x)u_2 = u_1(\pa_t u_2)+(\pa_t u_1)u_2% {}+\text{arbitrary cubic terms} \end{cases} $$ will be established, provided that $ c_1^2 \ne c_2^2 $.

Keywords:

Wave equations, Multiple speeds, Global existence

Classification:

35L70
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持