WELL-POSEDNESS FOR THE CAUCHY PROBLEMTO THE HIROTA EQUATION IN SOBOLEVSPACES OF NEGATIVE INDICES

Citation:

HUO Zhaohui,JIA Yueling.WELL-POSEDNESS FOR THE CAUCHY PROBLEMTO THE HIROTA EQUATION IN SOBOLEVSPACES OF NEGATIVE INDICES[J].Chinese Annals of Mathematics B,2005,26(1):75~88
Page view: 1290        Net amount: 754

Authors:

HUO Zhaohui; JIA Yueling
Abstract: The local well-posedness of the Cauchy problem for the Hirota equation is established for low regularity data in Sobolev spaces $H^s(s\geq -\frac{1}{4}).$ Moreover, the global well-posedness for $L^2$ data follows from the local well-posedness and the conserved quantity. For data in $H^s(s>0)$, the global well-posedness is also proved. The main idea is to use the generalized trilinear estimates, associated with the Fourier restriction norm method.

Keywords:

Fourier restriction norm, Trilinear estimates, Hirota equation, Low regularity, Global well-posedness

Classification:

35Q53, 35Q55, 35E15
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持