REGULARITY RESULTS FOR SOMEQUASI-LINEAR ELLIPTIC SYSTEMS INVOLVINGCRITICAL EXPONENTS

Citation:

HU Yexin,LI Juan.REGULARITY RESULTS FOR SOMEQUASI-LINEAR ELLIPTIC SYSTEMS INVOLVINGCRITICAL EXPONENTS[J].Chinese Annals of Mathematics B,2005,26(1):119~126
Page view: 1208        Net amount: 937

Authors:

HU Yexin; LI Juan

Foundation:

Project supported by the National Natural Science Foundation of China (No.10271077).
Abstract: The authors show the regularity of weak solutions for some typical quasi-linear elliptic systems governed by two $p$-Laplacian operators. The weak solutions of the following problem with lack of compactness are proved to be regular when $a(x)$ and $\alpha,\beta,p,q$ satisfy some conditions: $$\begin{cases} -\Delta_{p} u+a(x) |u|^{\alpha-1}|v|^{\beta+1}u=|u|^{p^*-2}u,\qquad &x \in \Omega,\\[1mm] -\Delta _{q}v +a(x)|u|^{\alpha+1}|v|^{\beta-1}v=|v|^{q^*-2}v, &x\in \Omega,\\[1mm] u(x)=v(x)=0, &x\in \partial\Omega, \end{cases}$$ where $\Omega\subset R^N$ $(N\geq 3)$ is a smooth bounded domain.

Keywords:

Elliptic equation system, p-Laplacian operator, Critical Sobolev exponent, Regularity

Classification:

35J65
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持