ON IDEAL CLASS GROUPS AND UNITS IN TERMS OF THE QUADRATIC FORM $x^2+32y^2$

Citation:

Jurgen HURRELBRINK,YUE Qin.ON IDEAL CLASS GROUPS AND UNITS IN TERMS OF THE QUADRATIC FORM $x^2+32y^2$[J].Chinese Annals of Mathematics B,2005,26(2):239~252
Page view: 1446        Net amount: 883

Authors:

Jurgen HURRELBRINK; YUE Qin

Foundation:

Project supported by the National Natural Science Foundation of China (No.10371054) and 02KJB11 006.
Abstract: For quadratic number fields $F={\mathbb Q}(\sqrt{2p_1\cdots p_{t-1}}\,)$ with primes $p_j\equiv 1$ mod 8, the authors study the class number and the norm of the fundamental unit of $F$. The results generalize nicely what has been familiar for the fields ${\mathbb Q}(\sqrt{2p}\,)$ with a prime $p\equiv 1$ mod 8, including density statements. And the results are stated in terms of the quadratic form $x^2+32y^2$ and illustrated in terms of graphs.

Keywords:

Class group, Redei Matrix, Fundamental unit

Classification:

11R70, 11R11, 11R27
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持