HUA’S THEOREM WITH FIVE ALMOSTEQUAL PRIME VARIABLES

Citation:

LU Guangshi.HUA’S THEOREM WITH FIVE ALMOSTEQUAL PRIME VARIABLES[J].Chinese Annals of Mathematics B,2005,26(2):291~304
Page view: 1388        Net amount: 803

Authors:

LU Guangshi;
Abstract: It is proved that each sufficiently large integer $N\equiv5(\bmod 24)$ can be written as $N=p_1^2+p_2^2+p_3^2+p_4^2+p_5^2$ with $|p_j-\sqrt{N/5}| \leq U=N^{\f{1}{2}-\f{1}{35}+\varepsilon},$ where $p_j$ are primes. This result, which is obtained by an iterative method and a hybrid estimate for Dirichlet polynomial, improves the previous results in this direction.

Keywords:

Additive theory of prime numbers, Circle method, Iterative method

Classification:

11P32, 11P05, 11N36, 11P55
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持