CHARACTERIZATIONS OF JORDAN $\dag$-SKEW MULTIPLICATIVE MAPS ON OPERATOR ALGEBRAS OF INDEFINITE INNER PRODUCT SPACES

Citation:

AN Runling,HOU Jinchuan.CHARACTERIZATIONS OF JORDAN $\dag$-SKEW MULTIPLICATIVE MAPS ON OPERATOR ALGEBRAS OF INDEFINITE INNER PRODUCT SPACES[J].Chinese Annals of Mathematics B,2005,26(4):569~582
Page view: 1377        Net amount: 1077

Authors:

AN Runling; HOU Jinchuan

Foundation:

Project supported by the National Natural Science Foundation of China (No.10471082) and the Shanxi Provincial Natural Science Foundation of China (No.20021005).
Abstract: Let $H$ and $K$ be indefinite inner product spaces. This paper shows that a bijective map $\Phi:{\mathcal B}(H)\rightarrow{\mathcal B}(K)$ satisfies $\Phi(AB^{\dag}+B^{\dag}A)=\Phi(A)\Phi(B)^\dag+\Phi(B)^\dag\Phi(A)$ for every pair $A,B\in{\mathcal B}(H)$ if and only if either $\Phi(A)=cUAU^\dag$ for all $A$ or $\Phi(A)=cUA^\dag U^\dag$ for all $A$; $\Phi$ satisfies $\Phi(AB^\dag A)=\Phi(A)\Phi(B)^\dag \Phi(A)$ for every pair $A,B\in{\mathcal B}(H)$ if and only if either $\Phi(A)=UAV$ for all $A$ or $\Phi(A)=UA^\dag V$ for all $A$, where $A^\dag$ denotes the indefinite conjugate of $A$, $U$ and $V$ are bounded invertible linear or conjugate linear operators with $U^\dag U=c^{-1}I$ and $V^\dag V=cI$ for some nonzero real number $c$.

Keywords:

Indefinite inner product spaces, $\dag$-Automorphisms, Jordan product

Classification:

46C20, 47B49
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持