SOBOLEV INEQUALITY ON RIEMANNIAN MANIFOLDS

Citation:

WANG Meng.SOBOLEV INEQUALITY ON RIEMANNIAN MANIFOLDS[J].Chinese Annals of Mathematics B,2005,26(4):651~658
Page view: 1096        Net amount: 801

Authors:

WANG Meng;

Foundation:

Project supported by the National Natural Science Foundation of China (No.10271107), the 973 Project of the Ministry of Science and Technology of China (No.G1999075105) and the Zhejiang Provincial Natural Science Foundation of China (No.RC97017).
Abstract: Let M be an n dimensional complete Riemannian manifold satisfying the doubling volume property and an on-diagonal heat kernel estimate. The necessary-sufficient condition for the Sobolev inequality $\|f\|_{q}\le C_{n,,\nu,p,q}(\|\nabla f\|_{p}+\|f\|_{p})\ (2\le p

Keywords:

Sobolev inequality, Complete manifold, Riesz transform, Potential, Heat kernel

Classification:

46E35, 53C25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持