Two New Families in the Stable Homotopy Groups of Sphere and Moore Spectrum

Citation:

Jinkun LIN.Two New Families in the Stable Homotopy Groups of Sphere and Moore Spectrum[J].Chinese Annals of Mathematics B,2006,27(3):311~328
Page view: 1317        Net amount: 1166

Authors:

Jinkun LIN;

Foundation:

Project supported by the National Natural Science Foundation of China (No.10171049).
Abstract: This paper proves the existence of an order $p$ element in the stable homotopy group of sphere spectrum of degree $p^nq + p^mq + q - 4$ and a nontrivial element in the stable homotopy group of Moore spectum of degree $p^nq + p^mq + q - 3$ which are represented by $h_0(h_mb_{n-1} - h_nb_{m-1})$ and $i_*(h_0h_nh_m)$ in the $E_2$-terms of the Adams spectral sequence respectively, where $p\geq 7$ is a prime, $n\geq m + 2 \geq 4,\ q = 2(p - 1)$.

Keywords:

Stable homotopy groups of spheres, Adams spectral sequence, Toda spectrum

Classification:

55Q45
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持