A Hybrid of Theorems of Goldbach and Piatetski-Shapiro

Citation:

Xianmeng MENG,Mingqiang WANG.A Hybrid of Theorems of Goldbach and Piatetski-Shapiro[J].Chinese Annals of Mathematics B,2006,27(3):341~352
Page view: 1069        Net amount: 811

Authors:

Xianmeng MENG; Mingqiang WANG

Foundation:

Project supported by the Foundation of Shandong Provincial Education Department in China (No.03F06) and the Grant for Doctoral Fellows in Shandong Finance Institute.
Abstract: It is proved that for almost all sufficiently large even integers $n$, the prime variable equation $n=p_1+p_2$, $p_1\in P_{\gamma}$ is solvable, with $13/15<\gamma\leq 1$, where $P_{\gamma}=\{p\mid p=[m^{\frac{1}{\gamma}}], \mbox{ for integer } m \mbox{ and prime }p\}$ is the set of the Piatetski-Shapiro primes.

Keywords:

Circle method, Sieve method, Goldbach problem

Classification:

11P32, 11P55
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持