Conformal CMC-Surfaces in Lorentzian Space Forms

Citation:

Changxiong NIE.Conformal CMC-Surfaces in Lorentzian Space Forms[J].Chinese Annals of Mathematics B,2007,28(3):299~310
Page view: 1244        Net amount: 801

Authors:

Changxiong NIE;

Foundation:

Project supported by the National Natural Science Foundation of China (No. 10125105) and the Research Fund for the Doctoral Program of Higher Education.
Abstract: Let $\Q^3$ be the common conformal compactification space of the Lorentzian space forms $\R^3_1$, $\S^3_1$ and $\H^3_1$. We study the conformal geometry of space-like surfaces in $\Q^3$. It is shown that any conformal CMC-surface in $\Q^3$ must be conformally equivalent to a constant mean curvature surface in $\R^3_1$, $\S^3_1$ or $\H^3_1$. We also show that if $x: M\to\Q^3$ is a space-like Willmore surface whose conformal metric $g$ has constant curvature $K$, then either $K=-1$ and $x$ is conformally equivalent to a minimal surface in $\R^3_1$, or $K=0$ and $x$ is conformally equivalent to the surface $\H^1(\frac{1}{\sqrt{2}})\times \H^1(\frac{1}{\sqrt{2}})$ in $\H^3_1$.

Keywords:

Conformal geometry, Willmore surfaces, Lorentzian space

Classification:

53A30, 53B30
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持