Problem with Critical Sobolev Exponent and with Weight

Citation:

Rejeb HADIJI.Problem with Critical Sobolev Exponent and with Weight[J].Chinese Annals of Mathematics B,2007,28(3):327~352
Page view: 1306        Net amount: 799

Authors:

Rejeb HADIJI;
Abstract: The authors consider the problem: $-{\rm div}(p\nabla u)={u}^{q -{1}}+\lambda{u}$, $u > 0$ in $\Omega$, $u=0$ on $\partial \Omega$, where $\Omega$ is a bounded domain in $\R^{n}$, ${n}\geq{3}$, $ p: \ov{\Omega}\rightarrow \R$ is a given positive weight such that $p\in H^{1}(\Omega)\cap C(\ov{\Omega})$, $\lambda$ is a real constant and $q=\frac{2n}{n-2}$, and study the effect of the behavior of $p$ near its minima and the impact of the geometry of domain on the existence of solutions for the above problem.

Keywords:

Critical Sobolev exponent, Variational methods

Classification:

35J20, 35J25, 35J60
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持