Elements of Small Orders in K2F II

Citation:

Jerzy BROWKIN.Elements of Small Orders in K2F II[J].Chinese Annals of Mathematics B,2007,28(5):507~520
Page view: 1201        Net amount: 867

Authors:

Jerzy BROWKIN;
Abstract: In ``Elements of small orders in $K_2(F)$" (Algebraic $K$-Theory, Lecture Notes in Math., {\bf 966}, 1982, 1--6.), the author investigates elements of the form $\{a,\ \Phi_n(a)\}$ in the Milnor group $K_2F$ of a field $F,$ where $\Phi_n(x)$ is the $n$-th cyclotomic polynomial. In this paper, these elements are generalized. Applying the explicit formulas of Rosset and Tate for the transfer homomorphism for $K_2$, the author proves some new results on elements of small orders in $K_2F.$

Keywords:

Cyclotomic elements in $K_2F$, Transfer in $K$-theory, Milnor group

Classification:

11R70, 19F15
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持