|
| |
On Galois Extension of Hopf Algebras |
| |
Citation: |
Guohua LIU,Shenglin ZHU.On Galois Extension of Hopf Algebras[J].Chinese Annals of Mathematics B,2008,29(1):65~70 |
Page view: 1096
Net amount: 793 |
Authors: |
Guohua LIU; Shenglin ZHU |
|
|
Abstract: |
Let $H$ be a cosemisimple Hopf algebra over a field $k,$ and $\pi:A\rightarrow H$ be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if $A$ is Galois over its coinvariants $B=\text{LH Ker\,}\pi$ and $B$ is a
sub-Hopf algebra of $A$, then $A$ is itself a Hopf algebra. This generalizes a result of Cegarra[3] on group-graded algebras. |
Keywords: |
Hopf algebra, Galois extension |
Classification: |
16W30 |
|
Download PDF Full-Text
|
|
|
|