Remark on the Regularities of Kato’sSolutions to Navier-Stokes Equations with Initial Data in L^d(R^d)

Citation:

Ping ZHANG.Remark on the Regularities of Kato’sSolutions to Navier-Stokes Equations with Initial Data in L^d(R^d)[J].Chinese Annals of Mathematics B,2008,29(3):265~272
Page view: 1010        Net amount: 875

Authors:

Ping ZHANG;

Foundation:

Project supported by the National Natural Science Foundation of China (Nos. 10525101, 10421101), the 973 Project of the Ministry of Science and Technology of China and the innovation grant from Chinese Academy of Sciences.
Abstract: Motivated by the results of J. Y. Chemin in “J. Anal. Math., 77, 1999, 27–50” and G. Furioli et al in “Revista Mat.Iberoamer., 16, 2002, 605–667”, the author considers further regularities of the mild solutions to Navier-Stokes equation with initial data u^0 \in L^d(R^d). In particular, it is proved that if u\in C([0,T^\ast);L^d(\R^d)) is a mild solution of (NS_\nu), then u(t,x)-\ee^{\nu t\D}u_0 \in\tL^\infty((0,T);\dot{B}^{1}_{\frac{d}2,\infty})\cap\tL^1((0,T);\dot{B}^{3}_{\frac{d}2,\infty}) for any T

Keywords:

Navier-Stokes equations, Kato’s solutions, Para-differential decomposition

Classification:

35L60, 76A02
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持