Nontrivial Solutions of Superquadratic Hamiltonian systems with Lagrangian Boundary Conditions and the L-index Theory

Citation:

Chong LI,Chungen LIU.Nontrivial Solutions of Superquadratic Hamiltonian systems with Lagrangian Boundary Conditions and the L-index Theory[J].Chinese Annals of Mathematics B,2008,29(6):597~610
Page view: 1140        Net amount: 799

Authors:

Chong LI; Chungen LIU

Foundation:

Partially supported by the National Natural Science Foundation of China (Nos. 10531050, 10621101) and the 973 Project of the Ministry of Science and Technology of China.
Abstract: In this paper, the authors study the existence of nontrivial solutions for the Hamiltonian systems$\dot z(t)=J\na H(t,z(t))$with Lagrangian boundary conditions, where $H(t,z)=\frac{1}{2} (\wh B(t)z,z)+\wh H(t,z)$, $\wh B(t)$ is a semipositive symmetric continuous matrix and $\wh H$ satisfies a superquadratic condition at infinity. We also obtain a result about the L-index.

Keywords:

L-index, Nontrivial solution, Hamiltonian systems, Lagrangian boundary conditions, Superquadratic condition

Classification:

58F05, 58E05, 34C25, 58F10
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持