LIMIT THEOREM FOR A CLASS OF SEQUENCE OFWEAKLY DEPENDENT RANDOM VARIABLES

Citation:

LIN ZHENGYAN.LIMIT THEOREM FOR A CLASS OF SEQUENCE OFWEAKLY DEPENDENT RANDOM VARIABLES[J].Chinese Annals of Mathematics B,1981,2(2):181~185
Page view: 822        Net amount: 727

Authors:

LIN ZHENGYAN;
Abstract: In this paper, we consider a central limit theorem for the sequence of stationary m-dependent random variables, the variance of which is possibly infinite. Theorem. Let {Xn, n=l, 2,...} be a sequence of stationary m-dependent random variables with means zero. The following conditions are satisfied. (i) \[{M^2}\int_{{\text{|}}{X_1}| > M} {dP} /\int_{{X_1}| < M} {X_1^2} dP \to 0{\kern 1pt} {\kern 1pt} {\kern 1pt} (M \to \infty )\] (ii) \[\int_{\{ {X_1}| < M,|{X_i}| < M} {X_1^{}} {X_i}dP/\int_{|{X_1}| < M} {X_1^2} dP \to 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (M \to \infty )\] then there are constants Bsubsub>0, such that \[\frac{1}{{{B_n}}}\sum\limits_{i = 1}^n {{X_1}} \] converges in distribution N(0,1).

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持