ON THE NECESSARY AND SUFFICIENT CONDITION OFTHE EXISTENCE OF QUASI INVARIANT MEASURES

Citation:

ZHANG YINNAN.ON THE NECESSARY AND SUFFICIENT CONDITION OFTHE EXISTENCE OF QUASI INVARIANT MEASURES[J].Chinese Annals of Mathematics B,1981,2(2):217~224
Page view: 980        Net amount: 783

Authors:

ZHANG YINNAN;
Abstract: If E is a separable type-2 Banach space and Esub<0>sub is a linear subspace of E, then the following are equivalent: (a) There exists a probability measure \[\mu \] on E, Which is \[{E_{\text{0}}}\]-quasi-invariant. (b) There exists a sequence \[({X_n}) \subset E\] such that \[\sum {{e_n}(\omega ){X_n}} \] converges a.s., where \[{{e_n}(\omega )}\] are indepondend identically distributed symmetric stable random variables of index 2,i,e.\[E(\exp (it{\kern 1pt} {\kern 1pt} {e_n}(\omega ))) = exp( - \frac{{{t^2}}}{2})\]for all real t, and \[{E_{\text{0}}} \subset \{ x,x = \sum {{\lambda _n}{X_n}} ,\forall ({\lambda _n}) \in {l_2}\} \] In this note we prove that \[\sum {{\lambda _n}{X_n}} \] is convergent.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持