On Regular Power-Substitution

Citation:

Huanyin CHEN.On Regular Power-Substitution[J].Chinese Annals of Mathematics B,2009,30(3):221~230
Page view: 1646        Net amount: 1161

Authors:

Huanyin CHEN;

Foundation:

the grant of Hangzhou Normal University (No. 200901).
Abstract: The necessary and sufficient conditions under which a ring satisfies regular power-substitution are investigated. It is shown that a ring $R$ satisfies regular power-substitution if and only if $a\ov\sim b$ in $R$ implies that there exist $n\in\BN$ and a $U\in\GL_n(R)$ such that $aU=Ub$ if and only if for any regular $x\in R$ there exist $m,n\in\BN$ and $U\in\GL_n(R)$ such that $x^mI_n=x^mUx^m$, where $a\ov\sim b$ means that there exists $x,y,z\in R$ such that $a=ybx$, $b=xaz$ and $x=xyx=xzx$. It is proved that every directly finite simple ring satisfies regular power-substitution. Some applications for stably free $R$-modules are also obtained.

Keywords:

Regular power-substitution, Regular power-cancellation, Stably free module

Classification:

16E50, 19B10
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持