Global Smooth Solutions to the 2-D Inhomogeneous Navier-Stokes Equations with Variable Viscosity

Citation:

Guilong GUI,Ping ZHANG.Global Smooth Solutions to the 2-D Inhomogeneous Navier-Stokes Equations with Variable Viscosity[J].Chinese Annals of Mathematics B,2009,30(5):607~630
Page view: 1920        Net amount: 2300

Authors:

Guilong GUI; Ping ZHANG;

Foundation:

the National Natural Science Foundation of China (Nos. 10525101, 10421101), the 973 project of the Ministry of Science and Technology of China and the innovation grant from Chinese Academy of Sciences.
Abstract: Under the assumptions that the initial density $\rho_0$ is close enough to $1$ and $\rho_0-1\in H^{s+1}(\R^2),$ $u_0\in H^s(\R^2)\cap \dot{H}^{-\e}(\R^2)$ for $s>2$ and $0<\e<1,$ the authors prove the global existence and uniqueness of smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with the viscous coefficient depending on the density of the fluid. Furthermore, the $L^2$ decay rate of the velocity field is obtained.

Keywords:

Inhomogeneous Navier-Stokes equations, Littlewood-Paley theory, Global smooth solutions

Classification:

35Q30, 76D03
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持