Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets

Citation:

Lifeng XI,Ying XIONG.Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets[J].Chinese Annals of Mathematics B,2010,31(2):211~218
Page view: 1832        Net amount: 1770

Authors:

Lifeng XI; Ying XIONG;

Foundation:

the National Natural Science Foundation of China (No. 10671180, 10571140, 10571063, 10631040, 11071164) and the Morningside Center of Mathematics.
Abstract: For a given self-similar set $E\subset \mathbb{R}^{d}$ satisfying the strong separation condition, let $\Aut(E)$ be the set of all bi-Lipschitz automorphisms on $E.$ The authors prove that $\{f\in \Aut(E):{\rm blip}(f)=1\}$ is a finite group, and the gap property of bi-Lipschitz constants holds, i.e., $ \inf \{{\rm blip}(f)\neq 1\!:\!f\in \Aut(E)\}>1,$ where ${\rm lip}(g)=\sup\limits_{x,y\in E \atop x\neq y}\frac{|g(x)-g(y)|}{|x-y|}$ and $ {\rm blip}(g)=\max ({\rm lip}(g),{\rm lip}(g^{-1})).$

Keywords:

Fractal, Bi-Lipschitz automorphism, Self-similar set

Classification:

28A80
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持