New Monotonicity Formulae for Semi-linear Elliptic and Parabolic Systems

Citation:

Li MA,Xianfa SONG,Lin ZHAO.New Monotonicity Formulae for Semi-linear Elliptic and Parabolic Systems[J].Chinese Annals of Mathematics B,2010,31(3):411~432
Page view: 1721        Net amount: 1210

Authors:

Li MA; Xianfa SONG; Lin ZHAO;

Foundation:

the National Natural Science Foundation of China (No. 10631020) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060003002).
Abstract: The authors establish a general monotonicity formula for the following elliptic system $$\Delta u_i+f_i(x,u_1,\cdots,u_m)=0\quad\mbox{in }\Omega,$$ where $\Omega\subset\subset \mathbb{R}^n$ is a regular domain, $(f_i(x,u_1,\cdots,u_m))=\nabla_{\vec{u}} F(x,\vec{u})$, $F(x,\vec{u})$ is a given smooth function of $x\in\mathbb{R}^n$ and $\vec{u}=(u_1,\cdots,u_m)\in\mathbb{R}^m$. The system comes from understanding the stationary case of Ginzburg-Landau model. A new monotonicity formula is also set up for the following parabolic system $$\partial_t u_i-\Delta u_i-f_i(x,u_1,\cdots,u_m)=0\quad\mbox{in }(t_1, t_2)\times\mathbb{R}^n,$$ where $t_1

Keywords:

Elliptic systems, Parabolic system, Monotonicity formula, Ginzburg-Landau model

Classification:

35Jxx, 17B40, 17B50
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持