Numerical Approximation of a Reaction-Diffusion System with Fast Reversible Reaction

Citation:

Robert EYMARD,Danielle HILHORST,Hideki MURAKAWA,Michal OLECH.Numerical Approximation of a Reaction-Diffusion System with Fast Reversible Reaction[J].Chinese Annals of Mathematics B,2010,31(5):631~654
Page view: 1780        Net amount: 1186

Authors:

Robert EYMARD; Danielle HILHORST; Hideki MURAKAWA; Michal OLECH;

Foundation:

a Marie Curie Transfer of Knowledge Fellowship of the European Community’s Sixth Framework Programme (No. MTKD-CT-2004-013389).
Abstract: The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction. It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate. It follows that the solution converges to the solution of a nonlinear diffusion problem, as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.

Keywords:

Instantaneous reaction limit, Mass-action kinetics, Finite volume methods, Convergence of approximate solutions, Discrete a priori estimates, Kolmogorov’s theorem

Classification:

35K45, 35K50, 35K55, 65M12, 65N12, 65N22, 80A30, 92E20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持