On a Class of Infinite-Dimensional Hamiltonian Systems with Asymptotically Periodic Nonlinearities

Citation:

Minbo YANG,Zifei SHEN,Yanheng DING.On a Class of Infinite-Dimensional Hamiltonian Systems with Asymptotically Periodic Nonlinearities[J].Chinese Annals of Mathematics B,2011,32(1):45~58
Page view: 1825        Net amount: 1208

Authors:

Minbo YANG; Zifei SHEN; Yanheng DING;

Foundation:

the National Natural Science Foundation of China (No. 10971194), the Zhejiang Provincial Natural Science Foundation of China (Nos. Y7080008, R6090109) and the Zhejiang Innovation Project (No. T200905).
Abstract: The authors study the existence of homoclinic type solutions for the following system of diffusion equations on $ \R\times \R^N$: \begin{align*} \left\{\!\!\!\begin{array}{ll} \partial_t u-\Delta_x u+b\cdot\nabla_x u+au +V(t,x)v = H_v(t,x,u,v), \\[1mm] -\partial_t v-\Delta_x v-b\cdot\nabla_x v+av + V(t,x)u = H_u(t,x,u,v), \end{array}\right. \end{align*} where $z=(u,v): \R\times \R^N \to \R^m\times \R^m$, $a>0$, $b=(b_1,\cdots,b_N)$ is a constant vector and $V\in C(\R\times \R^N, \R)$, $H\in C^1( \R\times \R^N\times \R^{2m}, \R)$. Under suitable conditions on $V(t,x)$ and the nonlinearity for $H(t,x,z)$, at least one non-stationary homoclinic solution with least energy is obtained.

Keywords:

Variational methods, Least energy solution, Hamiltonian system

Classification:

35R30, 49J40, 58D30
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持