Compatibility and Schur Complements of Operators on Hilbert C*-Module

Citation:

Xiaochun FANG,Jing YU.Compatibility and Schur Complements of Operators on Hilbert C*-Module[J].Chinese Annals of Mathematics B,2011,32(1):69~88
Page view: 1927        Net amount: 1407

Authors:

Xiaochun FANG; Jing YU;

Foundation:

the National Natural Science Foundation of China (Nos. 10771161, 11071188).
Abstract: Let $E$ be a Hilbert $C^{*}$-module, and $\mathscr{S}$ be an orthogonally complemented closed submodule of $E$. The authors generalize the definitions of $\mathscr{S}$-complementability and $\mathscr{S}$-compatibility for general (adjointable) operators from Hilbert space to Hilbert $C^{*}$-module, and discuss the relationship between each other. Several equivalent statements about $\mathscr{S}$-complementability and $\mathscr{S}$-compatibility, and several representations of Schur complements of $\mathscr{S}$-complementable operators (especially, of $\mathscr{S}$-compatible operators and of positive $\mathscr{S}$-compatible operators) on a Hilbert $C^{*}$-module are obtained. In addition, the quotient property for Schur complements of matrices is generalized to the quotient property for Schur complements of $\mathscr{S}$-complementable operators and $\mathscr{S}^*$-complementable operators on a Hilbert $C^*$-module.

Keywords:

Hilbert C ? -module, Compatibility, Complementability, Schur complement, Quotient property

Classification:

46L08, 47A64, 47A07
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持