Generalized Integral Representations for Functions with Values in $C(V_{3,3})$

Citation:

Klaus G¨ URLEBECK,Zhongxiang ZHANG.Generalized Integral Representations for Functions with Values in $C(V_{3,3})$[J].Chinese Annals of Mathematics B,2011,32(1):123~138
Page view: 1732        Net amount: 1400

Authors:

Klaus G¨ URLEBECK; Zhongxiang ZHANG;

Foundation:

the Deutscher Akademischer Austausch Dienst (German Academic Exchange Service) and the National Natural Science Foundation of China (No. 10471107).
Abstract: By using the solution to the Helmholtz equation u ? λu = 0 (λ ≥ 0), the explicit forms of the so-called kernel functions and the higher order kernel functions are given. Then by the generalized Stokes formula, the integral representation formulas related with the Helmholtz operator for functions with values in C(V3,3) are obtained. As application of the integral representations, the maximum modulus theorem for function u which satisfies Hu = 0 is given.

Keywords:

Universal Clifford algebra, Helmholtz equation, Generalized Cauchy- Pompeiu formula

Classification:

30G35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持