Quasi-convex Mappings on the Unit Polydisk in $\mathbb{C}^{n}$

Citation:

Xiaosong LIU,Taishun LIU.Quasi-convex Mappings on the Unit Polydisk in $\mathbb{C}^{n}$[J].Chinese Annals of Mathematics B,2011,32(2):241~252
Page view: 1929        Net amount: 1467

Authors:

Xiaosong LIU; Taishun LIU;

Foundation:

the National Natural Science Foundation of China (Nos. 10971063, 11061015), the Major Program of Zhejiang Provincial Natural Science Foundation of China (No. D7080080) and the Guangdong Provincial Natural Science Foundation of China (No. 06301315).
Abstract: In this paper, the sharp estimates of all homogeneous expansions for $f$ are established, where $f(z)=(f_1(z),f_2(z),\cdots,f_n(z))'$ is a $k$-fold symmetric quasi-convex mapping defined on the unit polydisk in $\Cn$ and \frac{D^{tk+1}f_p(0)(z^{tk+1})}{(tk+1) !}=\sum\limits_{l_1,l_2,\cdots,l_{tk+1}=1}^n|a_{p\,l_1l_2\cdots l_{tk+1}}| \rme^{\rmi\frac{\theta_{p\,l_1}+\theta_{pl_2}+\cdots+\theta_{pl_{tk+1}}}{tk+1}}z_{l_1}z_{l_2}\cdots z_{l_{tk+1}},\p=1,2,\cdots,n. Here $\rmi=\sqrt{-1},\ \theta_{pl_q}\in (-\pi, \pi](q=1,2,\cdots,tk+1),\ l_1,l_2,\cdots,l_{tk+1}=1,2,\cdots,n,t=1,2,\cdots$. Moreover, as corollaries, the sharp upper bounds of growth theorem and distortion theorem for a $k$-fold symmetric quasi-convex mapping are established as well. These results show that in the case of quasi-convex mappings, Bieberbach conjecture in several complex variables is partly proved, and many known results are generalized.

Keywords:

Estimates of all homogeneous expansions, Quasi-convex mapping, Quasi-convex mapping of type A, Quasi-convex mapping of type B

Classification:

32A30, 32H02
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持