A Poincar′e Inequality in a Sobolev Space with a Variable Exponent

Citation:

Philippe G. CIARLET,George DINCA.A Poincar′e Inequality in a Sobolev Space with a Variable Exponent[J].Chinese Annals of Mathematics B,2011,32(3):333~342
Page view: 1705        Net amount: 1652

Authors:

Philippe G. CIARLET; George DINCA;
Abstract: Let $\Omega$ be a domain in $\mathbb{R}^N$. It is shown that a generalized Poincar\'{e} inequality holds in cones contained in the Sobolev space $W^{1,p(\cdot)}(\Omega)$, where $p(\cdot) : \overline \Omega \to[1,\infty[$ is a variable exponent. This inequality is itself a corollary to a more general result about equivalent norms over such cones. The approach in this paper avoids the difficulty arising from the possible lack of density of the space $\mathcal{D}(\Omega)$ in the space $\{v\in W^{1,p(\cdot)}(\Omega) ; \mathop{\mathrm{tr}} v = 0 \text{ on } \partial \Omega\}$. Two applications are also discussed.

Keywords:

Poincar′e inequality, Sobolev spaces with variable exponent

Classification:

26D10, 26D15, 46E30, 46E35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持