Relative T -Injective Modules and Relative T -Flat Modules

Citation:

Mohammad Javad NIKMEHR,Farzad SHAVEISI.Relative T -Injective Modules and Relative T -Flat Modules[J].Chinese Annals of Mathematics B,2011,32(4):497~506
Page view: 1697        Net amount: 1240

Authors:

Mohammad Javad NIKMEHR; Farzad SHAVEISI;
Abstract: Let $T$ be a Wakamatsu tilting module. A module $M$ is called $(n,T)$-copure injective (resp. $(n,T)$-copure flat) if ${\mathcal{E}}_{T}^{1}(N,M)=0$ (resp. ${\Gamma}_{1}^{T}(N,M)=0$) for any module $N$ with $T$-injective dimension at most $n$ (see Definition \ref{2.2}). In this paper, it is shown that $M$ is $(n,T)$-copure injective if and only if $M$ is the kernel of an ${\mathcal{I}}_n(T)$-precover $f:A\rightarrow B$ with $A\in{\rm Prod}\,T$. Also, some results on ${\rm Prod}\,T$-syzygies are presented. For instance, it is shown that every $n{\rm th}$ ${\rm Prod}\,T$-syzygy of every module, generated by $T$, is $(n,T)$-copure injective.

Keywords:

Wakamatsu tilting module, (n, T )-Copure injective module, (n, T )- Copure flat module, T-Projective dimension, T-Injective dimension

Classification:

13D05, 13D07, 13D99
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持