|
| |
Relative T -Injective Modules and Relative T -Flat Modules |
| |
Citation: |
Mohammad Javad NIKMEHR,Farzad SHAVEISI.Relative T -Injective Modules and Relative T -Flat Modules[J].Chinese Annals of Mathematics B,2011,32(4):497~506 |
Page view: 1697
Net amount: 1240 |
Authors: |
Mohammad Javad NIKMEHR; Farzad SHAVEISI; |
|
|
Abstract: |
Let $T$ be a Wakamatsu tilting module. A module $M$ is called
$(n,T)$-copure injective (resp. $(n,T)$-copure flat) if
${\mathcal{E}}_{T}^{1}(N,M)=0$ (resp. ${\Gamma}_{1}^{T}(N,M)=0$)
for any module $N$ with $T$-injective dimension at most $n$ (see Definition \ref{2.2}).
In this paper, it is shown that $M$ is $(n,T)$-copure injective if and only if $M$
is the kernel of an ${\mathcal{I}}_n(T)$-precover $f:A\rightarrow B$ with $A\in{\rm Prod}\,T$.
Also, some results on ${\rm Prod}\,T$-syzygies are presented. For
instance, it is shown that every $n{\rm th}$ ${\rm Prod}\,T$-syzygy
of every module, generated by $T$, is $(n,T)$-copure injective. |
Keywords: |
Wakamatsu tilting module, (n, T )-Copure injective module, (n, T )-
Copure flat module, T-Projective dimension, T-Injective dimension |
Classification: |
13D05, 13D07, 13D99 |
|
Download PDF Full-Text
|
|
|
|