Variational Inclusion Systems in $\mathbb{R}^N$

Citation:

Zifei SHEN,Songqiang WAN.Variational Inclusion Systems in $\mathbb{R}^N$[J].Chinese Annals of Mathematics B,2011,32(4):619~630
Page view: 1682        Net amount: 1171

Authors:

Zifei SHEN; Songqiang WAN;

Foundation:

the National Natural Science Foundation of China (No. 10971194), the Zhejiang Provincial Natural Science Foundation of China (Nos. Y7080008, R6090109) and the Zhejiang Innovation Project (No. T200905).
Abstract: The authors study the existence of nontrivial solutions to $p$-Laplacian variational inclusion systems $$ \begin{cases} -\Delta_pu+|u|^{p-2}u\in\partial_1F(u,v),&\mbox{in } \mathbb{R}^N, \-\Delta_pv+|v|^{p-2}v\in\partial_2F(u,v),&\mbox{in } \mathbb{R}^N, \end{cases} $$ where $N\geq 2,\ 2\leq p\leq N$ and $F:\mathbb{R}^2 \rightarrow \mathbb{R}$ is a locally Lipschitz function. Under some growth conditions on $F$, and by Mountain Pass Theorem and the principle of symmetric criticality, the existence of such solutions is guaranteed.

Keywords:

Mountain pass theorem, p-Laplacian, Principle of symmetric criticality, Variational inclusion systems, (PS)-condition, Locally Lipschitz functions

Classification:

35J20, 35J25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持