A Criterion of Normality Concerning Holomorphic Functions Whose Derivative Omits a Function

Citation:

Xiaojun LIU,Yasheng YE.A Criterion of Normality Concerning Holomorphic Functions Whose Derivative Omits a Function[J].Chinese Annals of Mathematics B,2011,32(5):699~710
Page view: 1982        Net amount: 1535

Authors:

Xiaojun LIU; Yasheng YE;

Foundation:

the National Natural Science Foundation of China (No. 11071074) and the Outstanding Youth Foundation of Shanghai (No. slg10015).
Abstract: The authors discuss the normality concerning holomorphic functions and get the following result. Let $\mathcal{F}$ be a family of holomorphic functions on a domain $D\subset\mathbb C$, all of whose zeros have multiplicity at least $k$, where $k\ge2$ is an integer. And let $h(z)\not\equiv0$ be a holomorphic function on $D$. Assume also that the following two conditions hold for every $f\in\mathcal{F}$: (a) $f(z)=0\Longrightarrow|f^{(k)}(z)|<|h(z)|$; (b) $f^{(k)}(z)\ne h(z)$. Then $\mathcal{F}$ is normal on $D$.

Keywords:

Normal family, Holomorphic functions, Omitted function

Classification:

30D35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持