Thompson's Group $F$ and the Linear Group GL$_{\infty}(\mathbb{Z})$\

Citation:

Yan WU,Xiaoman CHEN.Thompson's Group $F$ and the Linear Group GL$_{\infty}(\mathbb{Z})$\[J].Chinese Annals of Mathematics B,2011,32(6):863~884
Page view: 1755        Net amount: 1150

Authors:

Yan WU; Xiaoman CHEN;

Foundation:

the National Natural Science Foundation of China (No. 10731020) and the Shanghai Natural Science Foundation of China (No. 09ZR1402000).
Abstract: The authors study the finite decomposition complexity of metric spaces of $H$, equipped with different metrics, where $H$ is a subgroup of the linear group ${\rm GL}_{\infty}(\mathbb{Z})$. It is proved that there is an injective Lipschitz map $\varphi:(F, d_{S})\rightarrow(H,d)$, where $F$ is the Thompson's group, $d_{S}$ the word-metric of $F$ with respect to the finite generating set $S$ and $d$ a metric of $H$. But it is not a proper map. Meanwhile, it is proved that $\varphi:(F, d_{S})\rightarrow(H,d_{1})$ is not a Lipschitz map, where $d_{1}$ is another metric of $H$.

Keywords:

Finite decomposition complexity, Thompson’s group F, Word-metric, Lipschitz map, Reduced tree diagram

Classification:

46L07, 46L80
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持