2025年4月28日 星期一

 
Dehn Twists and Products of Mapping Classes of Riemann Surfaces with One Puncture

Citation:

Chaohui ZHANG.Dehn Twists and Products of Mapping Classes of Riemann Surfaces with One Puncture[J].Chinese Annals of Mathematics B,2011,32(6):885~894
Page view: 1716        Net amount: 1213

Authors:

Chaohui ZHANG;
Abstract: Let $S$ be a Riemann surface that contains one puncture $x$. Let $\mathscr{S}$ be the collection of simple closed geodesics on $S$, and let $\mathscr{F}$ denote the set of mapping classes on $S$ isotopic to the identity on $S\cup \{x\}$. Denote by $t_c$ the positive Dehn twist about a curve $c\in \mathscr{S}$. In this paper, the author studies the products of forms $\left(t_b^{-m}\circ t_a^n\right)\circ f^k$, where $a,b\in \mathscr{S}$ and $f\in \mathscr{F}$. It is easy to see that if $a=b$ or $a,b$ are boundary components of an $x$-punctured cylinder on $S$, then one may find an element $f\in \mathscr{F}$ such that the sequence $\left(t_b^{-m}\circ t_a^n\right)\circ f^k$ contains infinitely many powers of Dehn twists. The author shows that the converse statement remains true, that is, if the sequence $\left(t_b^{-m}\circ t_a^n\right)\circ f^k$ contains infinitely many powers of Dehn twists, then $a,b$ must be the boundary components of an $x$-punctured cylinder on $S$ and $f$ is a power of the spin map $t_b^{-1}\circ t_a$.

Keywords:

Riemann surfaces, Simple closed geodesics, Dehn twists, Products, Bers isomorphisms

Classification:

32G15, 30C60, 30F60
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持